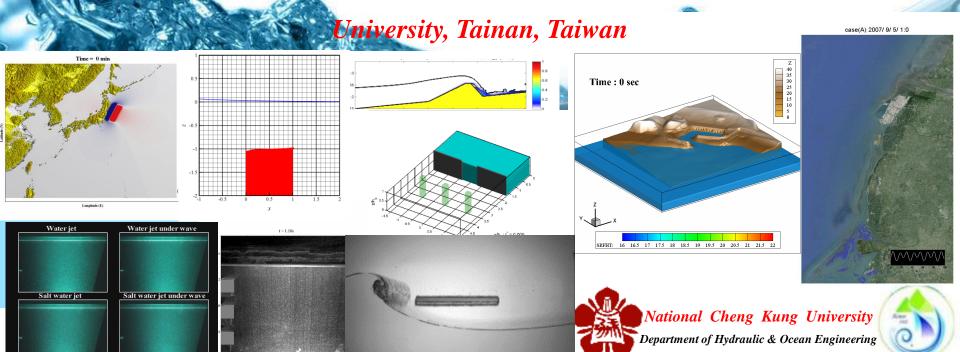
Some topics on wave interaction with coastal structures: experiment and numerical modeling

Shih-Chun Hsiao (蕭士俊)

Professor, Department of Hydraulic and Ocean Engineering, National Cheng Kung



Free surface (0<VOF<1) & Turbulent Kinetic Energy (TKE)

Outline

- Water Wave & Current Models
- Wave Dynamics Laboratory

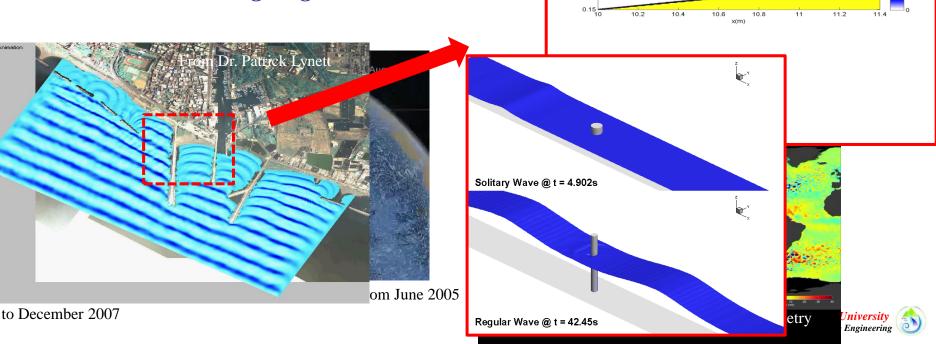
> Wave Interaction With Coastal Structures: Experiment

and Numerical Modeling

✓ Background on Tsunami Hazards

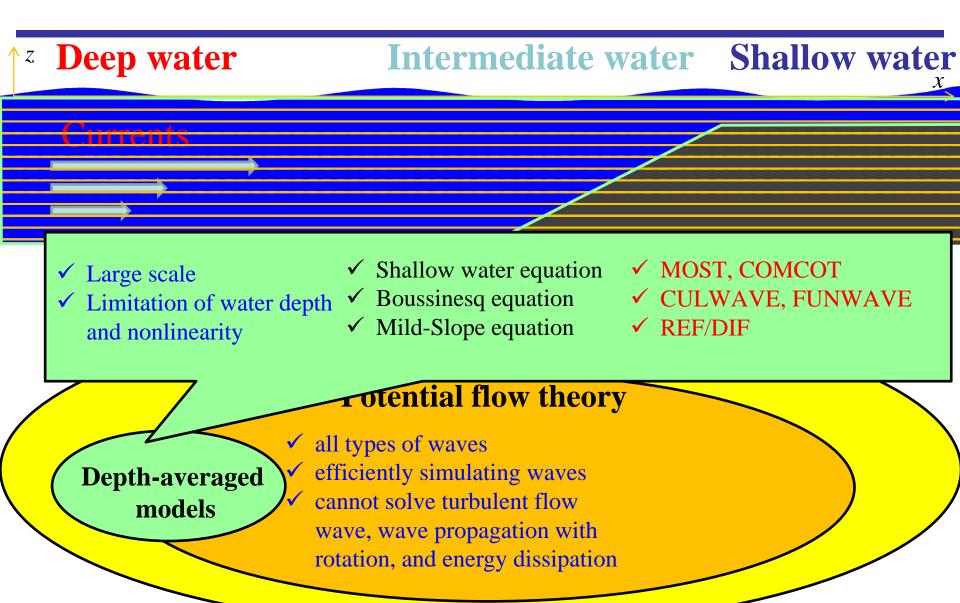
✓ Numerical Modeling on Tsunami-like Long Waves

> Conclusion and Ongoing Works



From NOAA

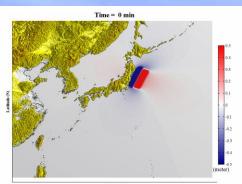
Water Wave & Current Models



Wave Dynamics Laboratory

Nonlinear Shallow Water Model

Boussinesq Model



Numerical Modeling

(Small-scale)

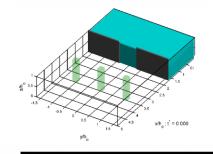
Coupling Model

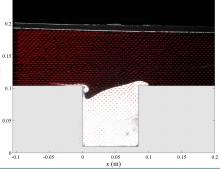
Meshless Potential Flow Model

2D RANS Model

3D Model

(LES Model & FLOW-3D)





Physical Experiment

Non-Intrusive Measurement (ex: Particle Image Velocimetry & Laser-Induced Fluorescence)

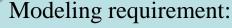
Intrusive Measurement (ex: wave gauge & pressure transducer)

Numerical Modeling (Large-scale)

Nonlinear Shallow Water Model

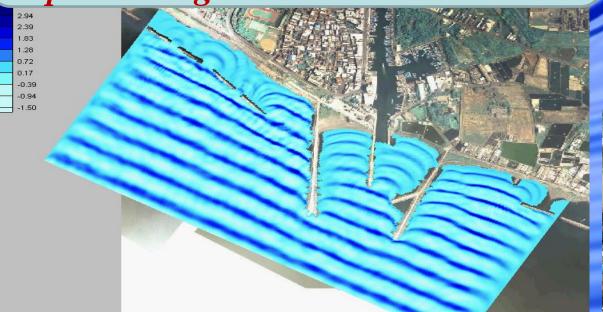
Boussinesq Model

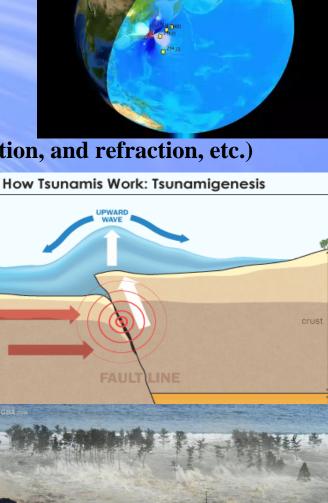
- > Coastal hazard prevention and mitigation:
- ✓ Tsunami (generation, propagation, amd inundation)
- ✓ Wave field in large scale (wave reflection, diffraction, and refraction, etc.)



- ✓ Large computational domain
- ✓ High efficiency

Depth-averaged Model





Numerical Modeling (small-scale)

Meshless Potential Flow Model

2D RANS Model

3D Model

(LES Model & FLOW-3D)

- > Fluid-structure interaction problems:
- **✓** Stationary structures
- **✓ Porous structures**
- ✓ Muti-phase

Modeling requirement:

- ✓ Detailed flow field and pressure distribute
- ✓ Fully nonlinear and fully dispersive

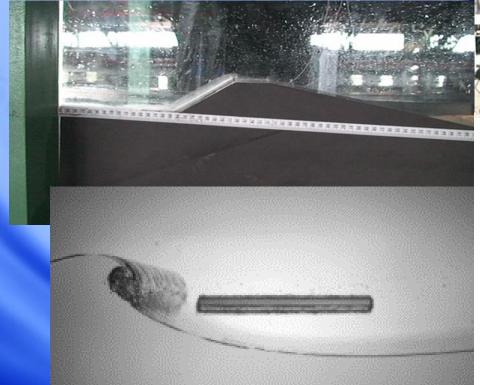
Depth-resolving Model

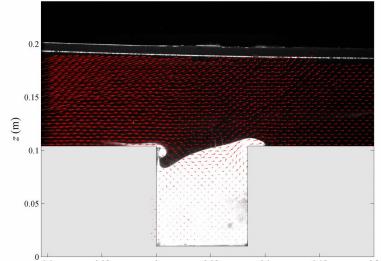
Physical Experiment

Non-Intrusive Measurement (ex: Particle Image Velocimetry & Laser-Induced Fluorescence)

Intrusive Measurement (ex: wave gauge & pressure transducer)

- > Free surface measurement
- > Flow field measurement
- > Fluid transport capture
- > Pressure measurement

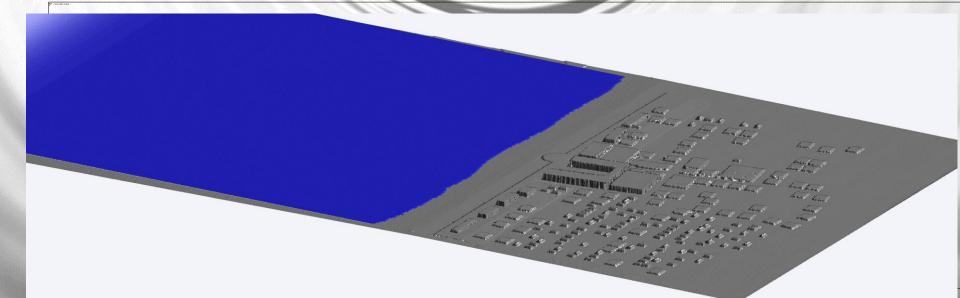




Solitary Wave Interaction With Coastal Structures: Experiment And Numerical Modeling

- Background on Tsunami Hazards
- Numerical Modeling on Tsunami-like long waves
- ✓ Large-scale tsunami experimentsOn the evolution and run-up of breaking solitary waves on a mild sloping beach
- ✓ Small-scale tsunami experiments—

 Solitary wave interaction with a submerged vertical barrier

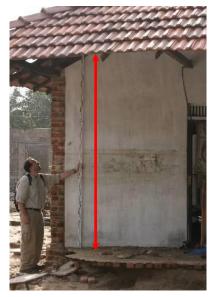


Background on Tsunami Hazards

- > Tsunami calamity has a evident relevance to the shoreline movement on the nearshore beach (run-up & rundown).
- > Understanding a detailed evolution course and shoreline properties of tsunami-like waves are essential and urgent even for the East-Asia countries.

Tsunami-induced underlying bore propagation along the Iwaki River (Yatsumori, Japan 1983)

Significant impact by tsunami waves accompanied run-up & run-down (Sri-Lanka; Science paper, 2005)



Inundation Evidence

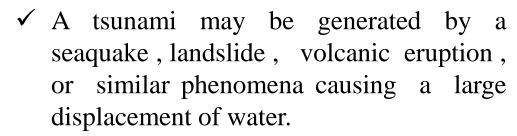
Photos by Prof. Philip Liu and Prof. Lynett (2005, Science paper)

Background on Tsunami Hazards

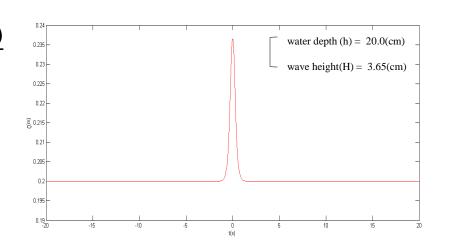
The solitary wave of Boussinesq (1872)

$$\eta = \operatorname{Hsech}^2 \sqrt{\frac{3H}{4h^3}} (x - ct)$$

$$c = \sqrt{g(H+h)}$$



✓ Traditionally, solitary waves are often utilized to investigate the characteristic of tsunami behaviors because of their hydrodynamic similarities.



On the Evolution and Run-up of Breaking Solitary Waves on a Mild Sloping Beach

- > Large-scale tsunami experiments
- > Numerical modeling on tsunami-like long waves
 - Boussinesq Model
- Model Validation
- > Numerical experiments

➤ Laboratory animation of tsunami wave propagation (THL)

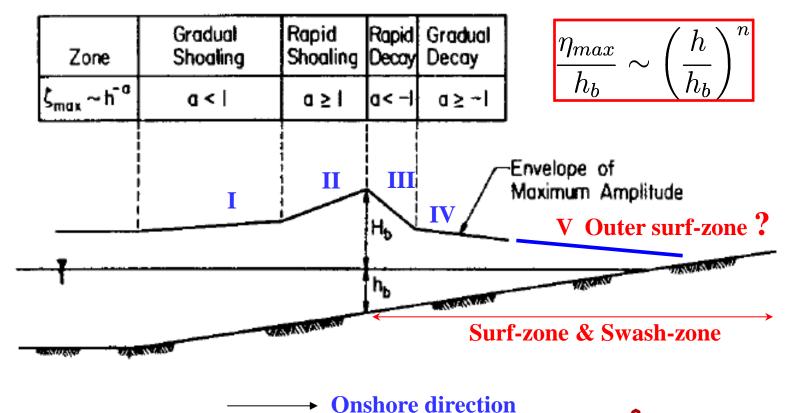
- Tainan Hydraulic Laboratory (THL)
- ✓ Equipped with an unique supertank (300m×5m×5.2m) which is capable of simulating the tsunami-like solitary wave propagation with <u>long distance</u> and <u>deep water condition</u>.

#Totally 54 trials were carried out in this study

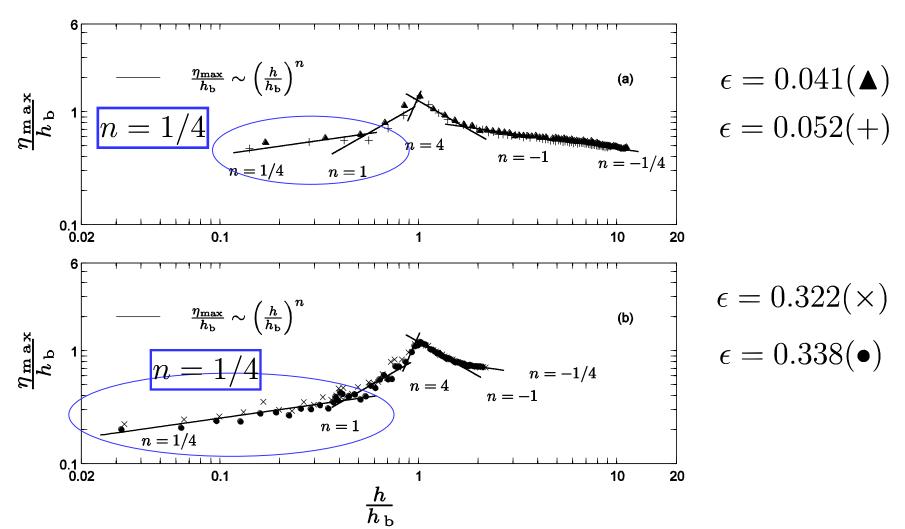
$$\epsilon = H_{\circ}/h_{\circ} = 0.011 \sim 0.338$$
 $h_{\circ} = 1.2m, 2.2m, 2.9m$

Synolakis & Skjelbreia (1993) -

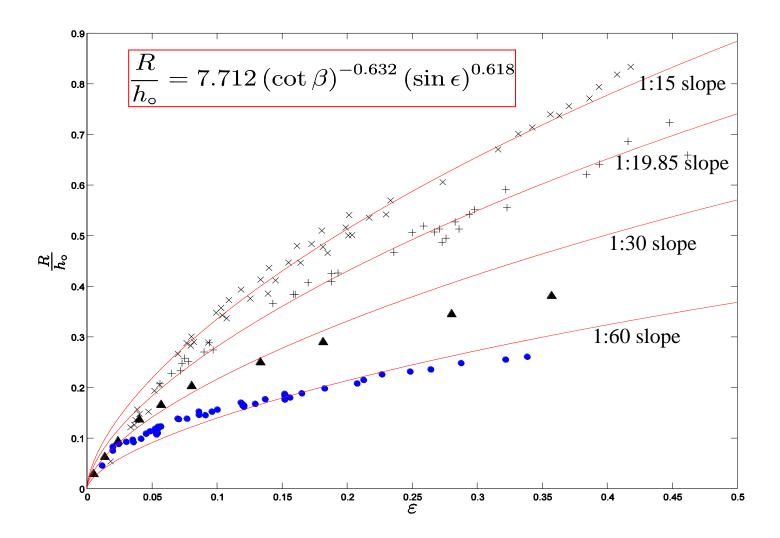
Amplitude evolution of a breaking solitary wave on a plane slope



Amplitude evolution



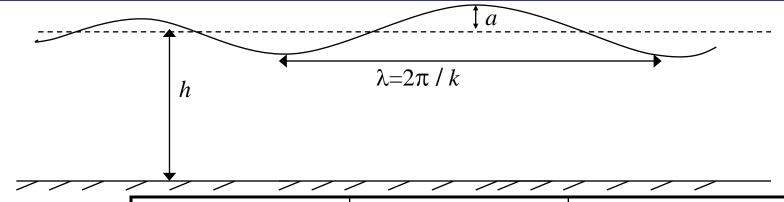
➤ Maximum Run-up



On the Evolution and Run-up of Breaking Solitary Waves on a Mild Sloping Beach

- > Large-scale tsunami experiments
- Numerical modeling on tsunami-like long waves
 - Boussinesq Model
- > Model Validation
- > Numerical experiments

Boussinesq Model -Water Wave Modeling Efficiency

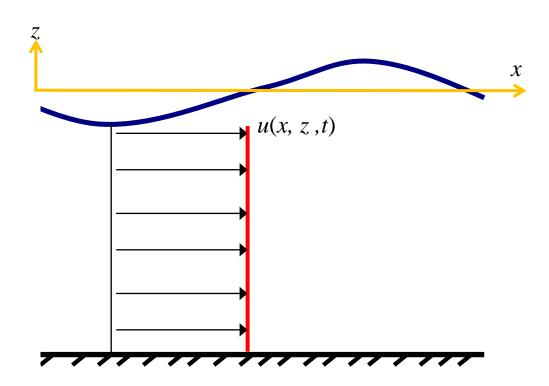


Increasing Computational Time

Solving Approach	Nonlinearity restriction	Frequency dispersion restriction
Linear / Analytic	<i>a/h</i> ~ 0	kh unbounded — fully dispersive, in the linear sense
Depth-Integrated / Numerical	$a/h \sim O(1)$ – highly nonlinear	$kh \sim 0$ NLSW $kh < \pi$ Boussinesq
Potential Flow & Navier Stokes / Numerical	Fully nonlinear	Fully dispersive

Boussinesq Model-History of Depth-Averaged Approach

- ➤ What is a "depth-averaged" equation?
 - ✓ A quick derivation:
 - ✓ Shallow water wave equations: u(x, z, t) = A(x, t)

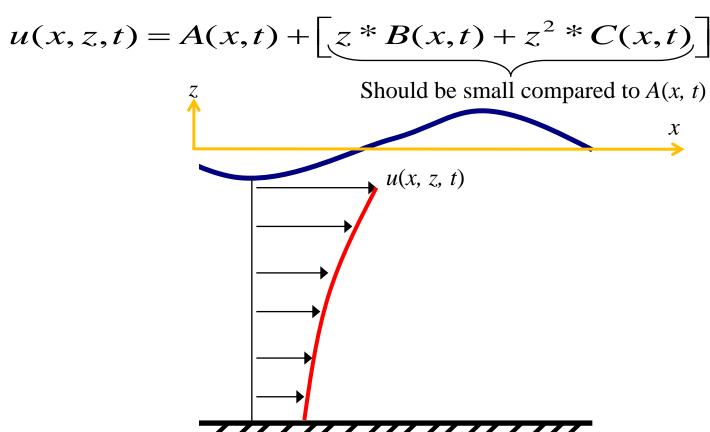


✓ Accurate only for very long waves, kh<~0.25 (wavelength > ~ 25 water depths)

Boussinesq Model-

History of Depth-Averaged Approach

✓ Boussinesq Equations (Peregrine, 1967; Ngowu, 1993):



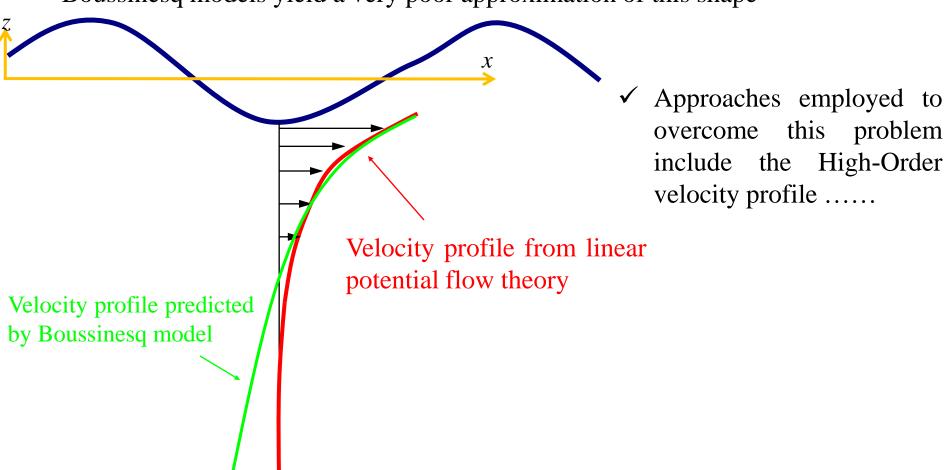
- ✓ Functions B, C lead to 3^{rd} order spatial derivatives in model (eqns)
- ✓ Accurate for long and intermediate depth waves, kh<~3 (wavelength > ~ 2 water depths)

 **National Cheng Kung University Department of Hydraulic & Ocean Engineering

Boussinesq Model-Limitations of Bouss

Limitations of Boussinesq Models

- ✓ Velocity profile of deep water waves looks like an exponential (e^{-kz}) in the vertical
- ✓ Boussinesq models yield a very poor approximation of this shape

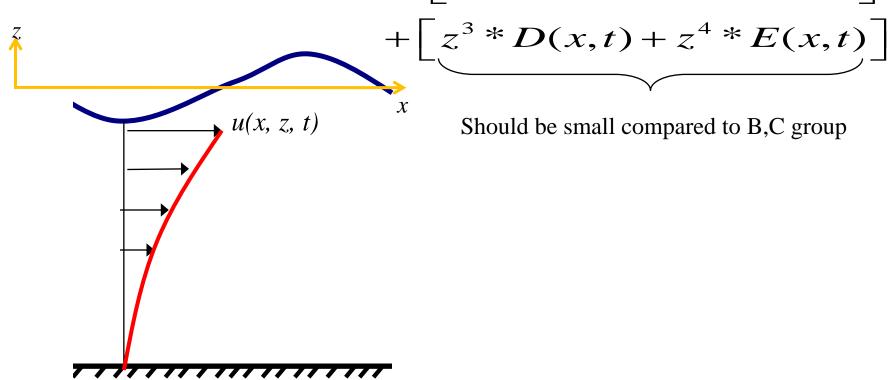


Boussinesq Model -

History of Depth-Averaged Approach

✓ High-Order Boussinesq Equations (Gobbi *et al.*, 2000):

$$u(x,z,t) = A(x,t) + \left[z * B(x,t) + z^2 * C(x,t)\right]$$



Should be small compared to B,C group

- ✓ Accurate for long, intermediate, and moderately deep waves, kh<~6 (wavelength $> \sim 1$ water depth)
- \checkmark Functions D, E lead to 5th order spatial derivatives in model Popur Mational Cheng Kung University Department of Hydraulic & Ocean Engineering

Boussinesq Model -History of Depth-Averaged Approach

- ➤ Difficult to solve the high-order model
- ✓ Momentum equation:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \dots + C_1 \frac{\partial^5 u}{\partial x^5} = 0$$

- ✓ To solve consistently, numerical truncation error (Taylor series error) for leading term must be less important than included terms.
- \checkmark For example: 2nd order in space finite difference:

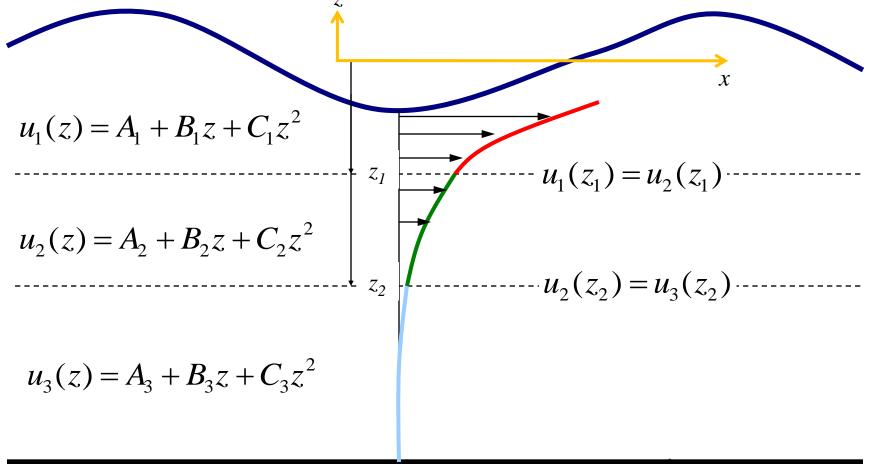
$$\frac{\partial u(x_o, t)}{\partial x} = \frac{u(x_o + \Delta x, t) - u(x_o - \Delta x, t)}{2\Delta x} - \frac{\Delta x^2}{6} \frac{\partial^3 u(x_o, t)}{\partial x^3}$$

- \checkmark High-order model requires use of 6-point difference formulas (Dx⁶ accuracy)
- ✓ Additionally, time integration would require a Dt⁶ accurate scheme

Boussinesq Model Employing Multiple La

Employing Multiple Layers (Lynett & Liu, 2002)

- ➤ Divide water column into arbitrary layers
- ✓ Each layer governed by an independent velocity profile, each in the same form as traditional Boussinesq models:



Boussinesq Model -Employing Multiple I

Employing Multiple Layers (Lynett & Liu, 2002)

- ✓ Regardless of # of layers, *highest order of derivation is 3*
- ✓ The more layers used, the more accurate the model
- ✓ Any # of layers can be used
 - 1-Layer model = Boussinesq model
 - Numerical applications of 2-Layer model to be discussed
- ✓ Location of layers will be optimized for good agreement with known, analytic properties of water waves

$$u_1(z) = A_1 + B_1 z + C_1 z^2$$

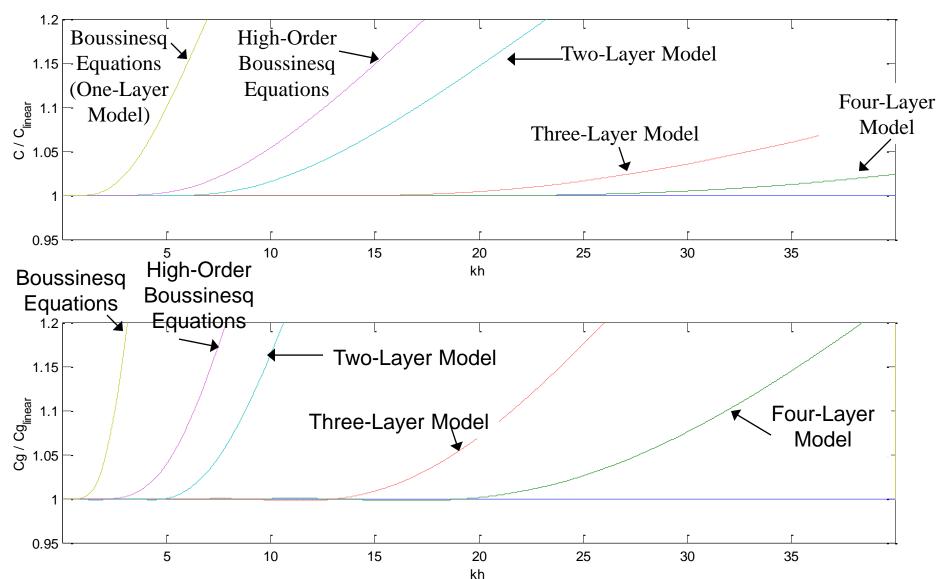
$$u_2(z) = A_2 + B_2 z + C_2 z^2$$

$$u_3(z) = A_3 + B_3 z + C_3 z^2$$

Boussinesq Model -Linear Dispersion F

Linear Dispersion Properties of Multi-Layer Model

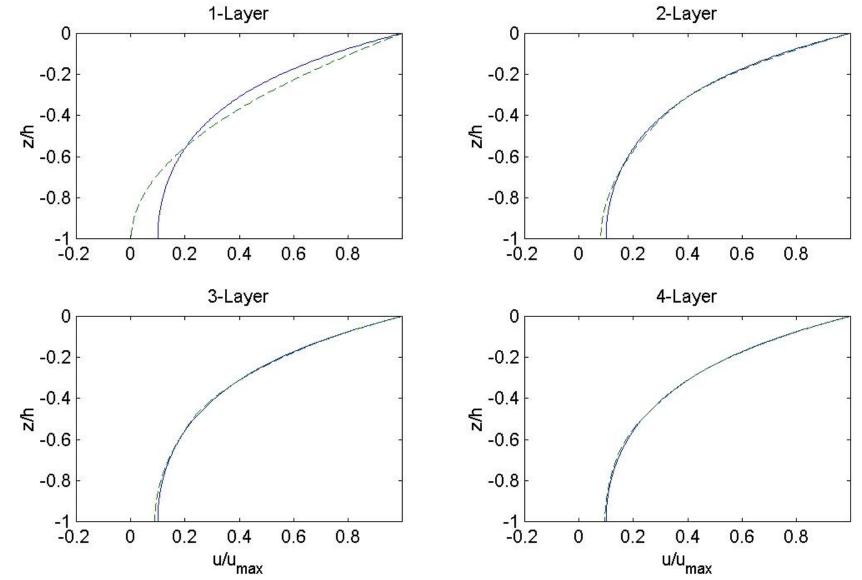
Compare phase and group velocity with linear theory



Boussinesq Model -Linear Dispersion Pro

Linear Dispersion Properties of Multi-Layer Model

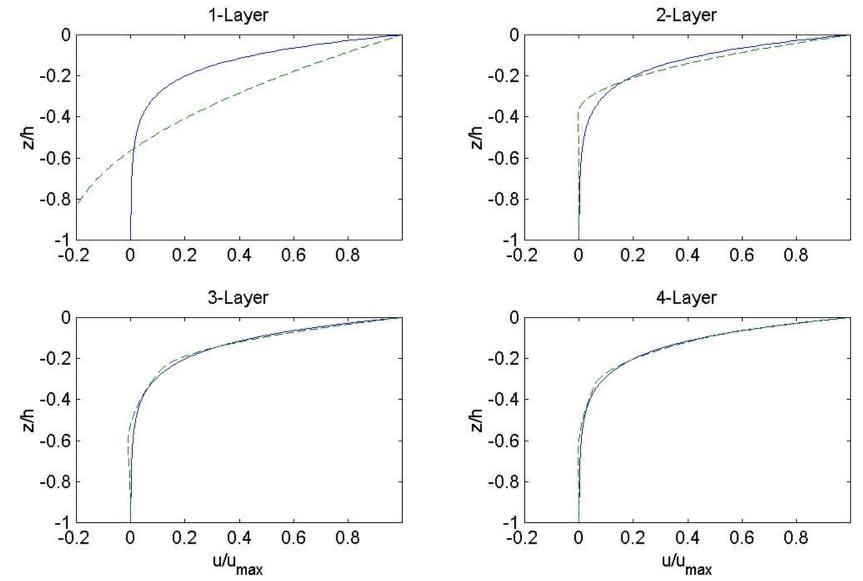
➤ Vertical profile of horizontal velocity for kh=3



Boussinesq Model -Linear Dispersion Prop

Linear Dispersion Properties of Multi-Layer Model

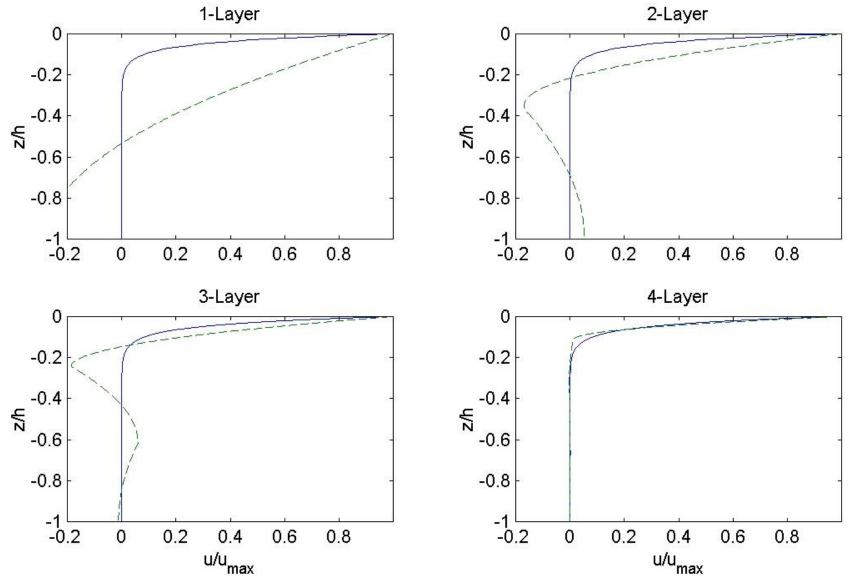
➤ Vertical profile of horizontal velocity for kh=8



Boussinesq Model -Linear Dispersion Prope

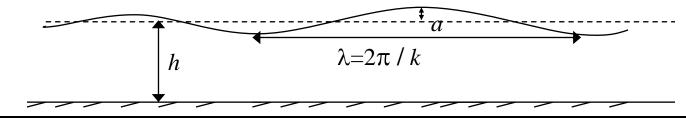
Linear Dispersion Properties of Multi-Layer Model

➤ Vertical profile of horizontal velocity for kh=25



Boussinesq Model -

Back to Water Wave Modeling Efficiency



			h	$\lambda=2\pi/k$
Increa CPU	_	Solving Approach	Nonlinearity restriction	Frequency dispersion restriction
		Linear / Analytic	a/h ~ 0	kh unbounded – fully dispersive, in the linear sense
	Depth-Integrated / Numerical	a/h ~ O(1) – fully nonlinear	$kh \sim 0$ NLSW $kh < \sim 3 (\lambda/h > 2)$ Boussinesq $kh < \sim 5 (\lambda/h > 1.2)$ High-Order Bous.	
		Multi-Layer Modeling	a/h ~ O(1) – fully nonlinear	$kh < \sim 8 \ (\lambda / h > 0.8)$ 2-Layer $kh < \sim 15 \ (\lambda / h > 0.4)$ 3-Layer $kh < \sim 30 \ (\lambda / h > 0.2)$ 4-Layer
	7	Potential Flow & Navier Stokes / Numerical	Fully nonlinear	Fully dispersive

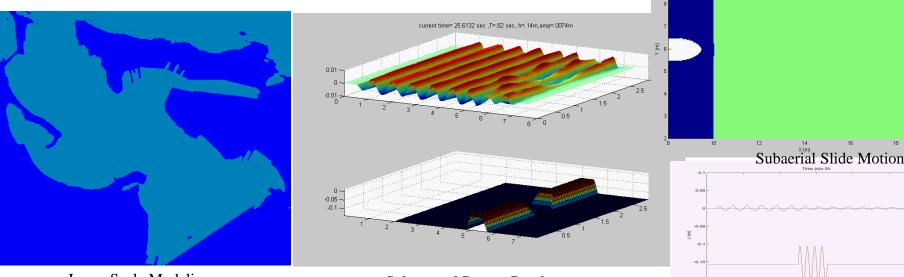
Bragg Scattering

Boussinesq Model -Modeling in The Nearshore

- Fundamentally, the Boussinesq model should not be used landward of the breaker zone due to its theoretical assumptions of irrotationality and no viscous effects
- ✓ However, we add ad-hoc breaking and turbulence models to approximate these phenomena

✓ Tuned empirically with experimental data to provide reasonable

predictions for a range of setups



Large Scale Modeling Submerged Porous Breakwater

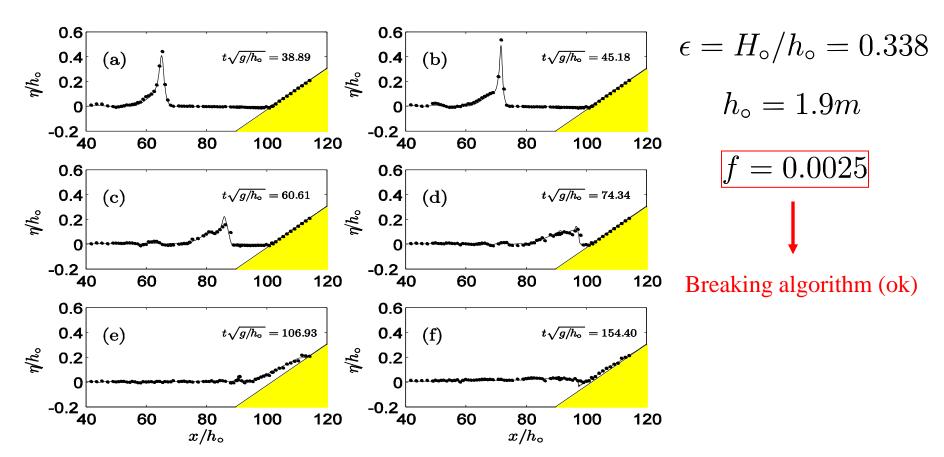
On the Evolution and Run-up of Breaking Solitary Waves on a Mild Sloping Beach

- > Large-scale tsunami experiments
- > Numerical modeling on tsunami-like long waves
 - Boussinesq Model
- Model Validation
- > Numerical experiments

Model Validation

> Breaking solitary wave climbing up a slope (I)

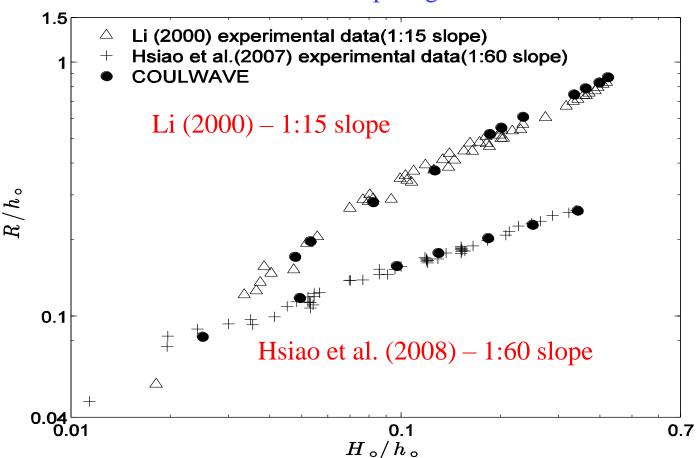
Hsiao et al. (2008) - 1:60 gradual slope



Model Validation

> Breaking solitary wave climbing up a slope (II)

Maximum run-up height



f = 0.0025

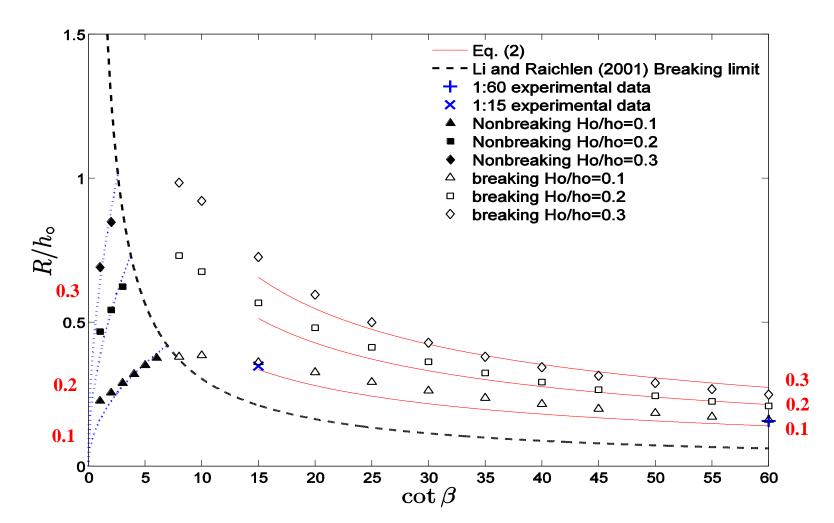
On the Evolution and Run-up of Breaking Solitary Waves on a Mild Sloping Beach

- > Large-scale tsunami experiments
- > Numerical modeling on tsunami-like long waves
 - Boussinesq Model
- Model Validation
- Numerical experiments

Numerical Experiments

► Non-breaking waves: $R \propto \cot \beta$

ightharpoonup Breaking waves: $R \propto (\cot \beta)^{-1}$



Concluding Remarks - Experiments

- Laboratory experiments are presented to study the tsunami-like solitary waves propagation and run-up on a gentle slope,
- ✓ A zone behind the gradual decay zone is demonstrated and it can be well-described by $\eta_{max} \sim h^{1/4}$
- ✓ An empirical formula for reasonably estimating the maximum run-up of a breaking solitary wave on a plane beach is proposed $(15 \le \cot \beta \le 60)$,
- Present experimental results are in reasonable agreements with available data or methods, (Hsiao et al., 2008)

Concluding Remarks

- Numerical Results

- Numerical experiments are presented to simulate the properties of <u>non-breaking & breaking</u> solitary waves climbing up a sloping beach.
- ✓ For the non-breaking cases, the maximum run-up <u>increases</u> with the <u>decrease of slope angle</u>.
- ✓ For the breaking cases, the maximum run-up <u>decreases</u> with the <u>growth of bed slope</u>.

- Motivation
- > Small-scale tsunami experiments
- > Numerical modeling on tsunami-like long waves
 - RANS Model
- ➤ Model Validation
- Wave Force and Pressure Fields
- Energy Dissipation

Motivation

➤ Protections of coastal regions from the attack of incident waves have been an important problem and deep interest for coastal engineers. Man-made structures are deployed to *dissipate wave energy*, *reduce beach erosion*, and *for sustainable development*.

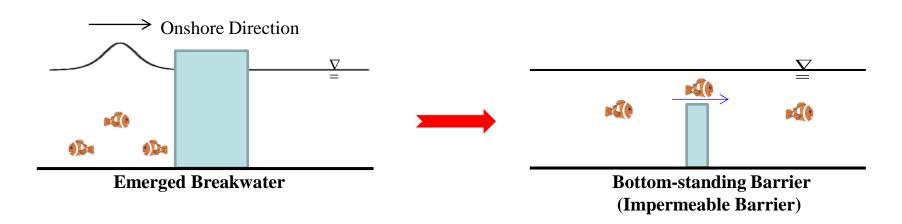
Seawall

[Chiting, 2007]

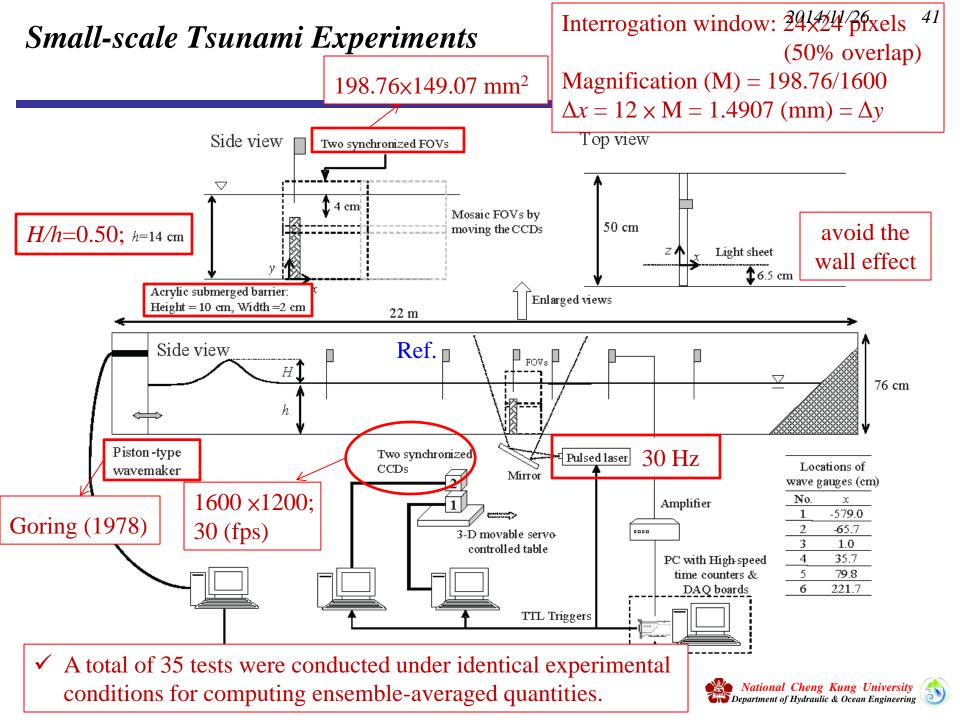
Artificial Reef

Motivation

- ✓ Most of existing studies were focused on conventional hard structure made of large amount of concrete and rubble mound, which is not *cost-effective* and may cause *inevitable environmental impacts* to some extent.
- ✓ An alternative design of breakwater, *wave barriers*, is considered. A common type of barrier is thin and rigid as cost-efficient structures in reducing transmitted energy of long waves.



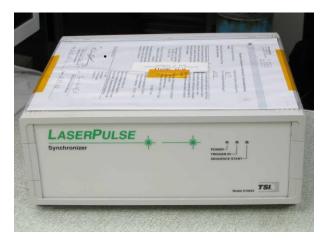
- Motivation
- > Small-scale tsunami experiments
- > Numerical modeling on tsunami-like long waves
 - RANS Model
- ➤ Model Validation
- Wave Force and Pressure Fields
- > Energy Dissipation



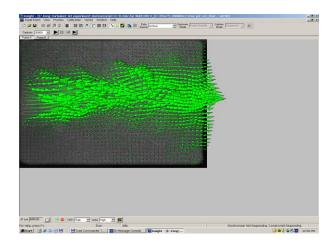
Small-scale Tsunami Experiments -Particle Image Velocimetry (PIV)

Dual-head pulsed Nd: YAG laser system

PowerViewTM 2M camera (CCD)



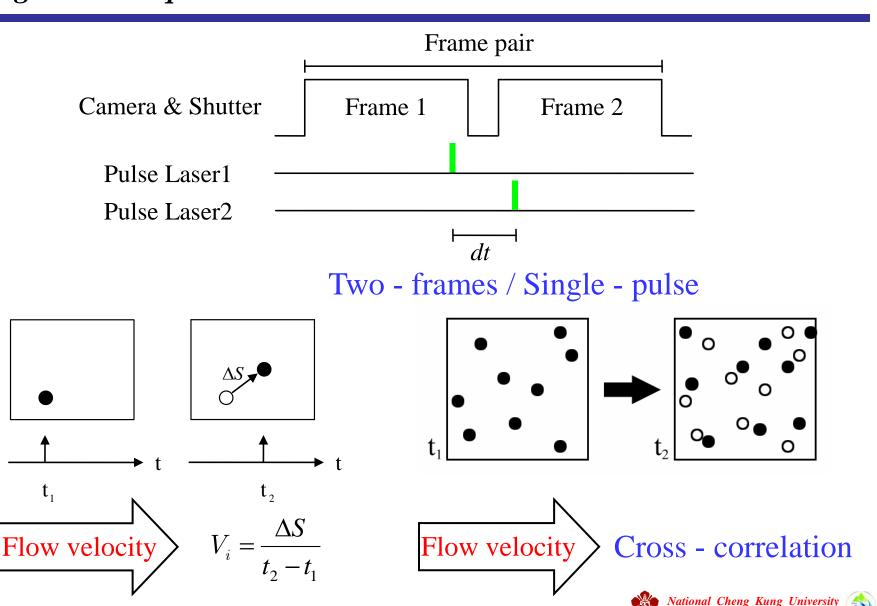
Synchronizer



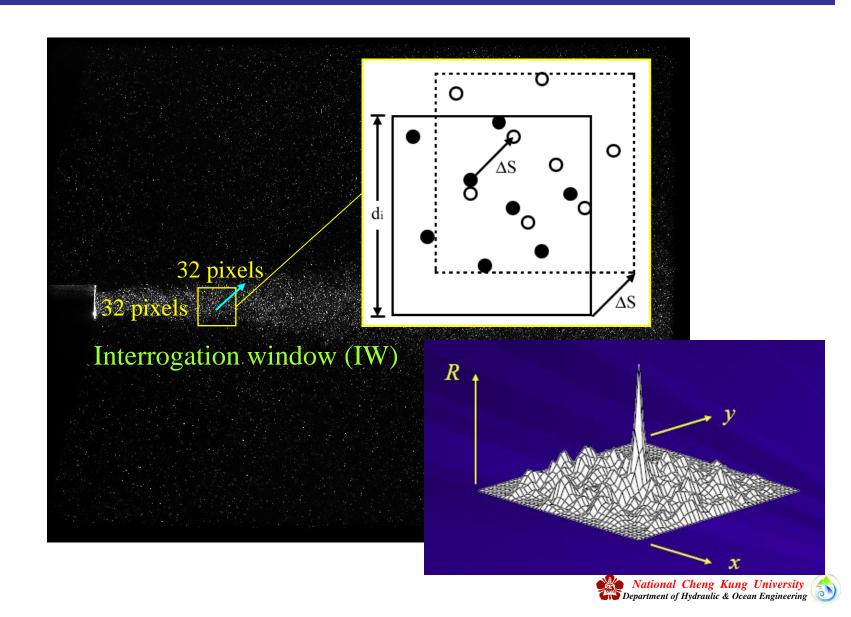
PIV analysis software

Department of Hydraulic & Ocean Engineering

Small-scale Tsunami Experiments -Image Data Acquisition Method



Small-scale Tsunami Experiments -Image Analysis



- Motivation
- > Small-scale tsunami experiments
- > Numerical modeling on tsunami-like long waves
 - RANS Model
- > Model validation
- Wave force and pressure fields
- > Energy dissipation

-Introduction of RANS model

- > [COBRAS] COrnell BReaking And Structure (Lin & Liu, 1998 JFM)
 - ✓ Reynolds-Averaged Navier-Stokes Equation (RANS)
 - ensemble averaged flow motions (mean flow motions)
 - ✓ Turbulence Kinetic Energy (TKE)
 - Modified $k \varepsilon$ closure model (Lin & Liu, 1997)
 - ✓ Free surface treatment-Volume of fluid (VOF) (Hirt & Nichols, 1981)
 - ✓ Target solitary wave is generated through the left boundary
 - Lee et al. (1982): Conventional Boussinesq eqs.c

J. Fluid Mech. (1998), vol. 359, pp. 239–264. Printed in the United Kingdom © 1998 Cambridge University Press

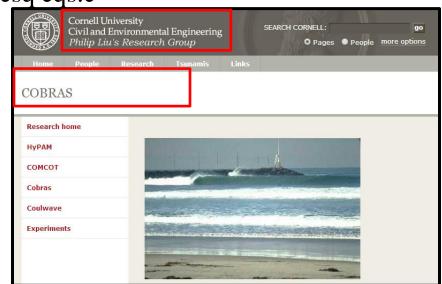
A numerical study of breaking waves in the surf zone

By PENGZHI LIN AND PHILIP L.-F. LIU

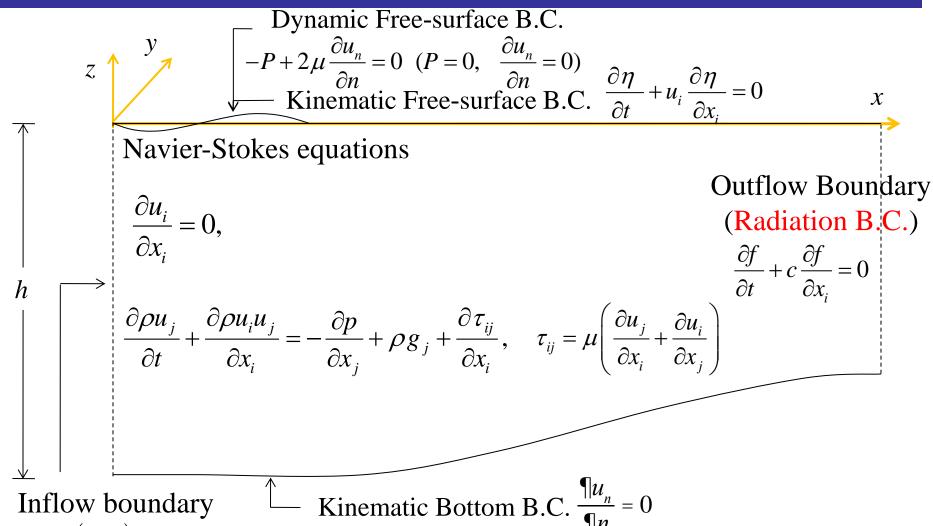
School of Civil and Environmental Engineering Cornell University, Ithaca, NY 14853, USA

(Received 10 May 1997 and in revised form 15 November 1997)

This paper describes the development of a numerical model for studying the evolution of a wave train, shoaling and breaking in the surf zone. The model solves the Reynolds equations for the mean (ensemble average) flow field and the $k-\epsilon$ equations for the turbulent kinetic energy, k, and the turbulence dissipation rate, ϵ . A nonlinear Reynolds stress model (Shih, Zhu & Lumley 1996) is employed to relate the Reynolds



-Introduction of RANS model



Inflow boundary

$$\eta(x_j,t)$$

$$u_i(x_i,t)$$

-Introduction of RANS model

- ➤ Since all types of fluid flows, laminar and turbulent, can be described by the *NSEs*, the numerical solution (*DNS*) for turbulent flow requires no special treatment except to solve the original NSEs.
- ✓ All turbulence structures, including the smallest Kolmogorov turbulence scale, must be adequately resolved by the numerical scheme.
- ✓ Based on Kolmogorov (1962), the smallest turbulence length scale (*e.g.*, Kolmogorov η) can be estimated as:

$$\left(\frac{L}{\eta}\right)^3 \sim Re^{9/4}$$

 \Rightarrow When Re = 2,100, the total grids $\approx 30,000,000$.

-Introduction of RANS model

> Reynolds decomposition:

$$u_{i} = \langle u_{i} \rangle + u'_{i}$$

$$p = \langle p \rangle + p'$$

$$\begin{cases} \frac{\partial u_{i}}{\partial x_{i}} = 0 \\ \frac{\partial \rho u_{i}}{\partial t} + \frac{\partial \rho u_{i} u_{j}}{\partial x_{j}} = -\frac{\partial p}{\partial x_{i}} + \rho g_{i} + \frac{\partial \tau_{ij}}{\partial x_{j}} \end{cases}$$

Assuming the turbulent fluctuations are random $\longrightarrow \langle u_i' \rangle = \langle p' \rangle$

$$\begin{cases} \frac{\partial \langle u_{i} \rangle}{\partial x_{i}} = 0, \\ \frac{\partial \rho \langle u_{i} \rangle}{\partial t} + \frac{\partial \rho \langle u_{i} \rangle \langle u_{j} \rangle}{\partial x_{j}} = -\frac{\partial \langle \rho \rangle}{\partial x_{i}} + \rho g_{i} + \frac{\partial \langle \tau_{ij} \rangle}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} \left(-\frac{\rho \langle u'_{i}u'_{j} \rangle}{\partial x_{j}} \right). \end{cases}$$
Reynolds-averaged Navier-Stokes equations (RANS).

National Cheng Kung University Department of Hydraulic & Ocean Engineering (RANS).

-Introduction of RANS model

The k- ε turbulent closure model:

$$k = \text{turbulent kinetic energy}$$

 $\varepsilon = \text{turbulent dissipation rate}$

$$=> \begin{cases} \frac{\partial k}{\partial t} + \left\langle u_{j} \right\rangle \frac{\partial k}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\left(\frac{\upsilon_{t}}{\sigma_{k}} + \upsilon \right) \frac{\partial k}{\partial x_{j}} \right] - \left\langle u'_{i} u'_{j} \right\rangle \frac{\partial \left\langle u_{i} \right\rangle}{\partial x_{j}} - \varepsilon, \\ \frac{\partial \varepsilon}{\partial t} + \left\langle u_{j} \right\rangle \frac{\partial \varepsilon}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\left(\frac{\upsilon_{t}}{\sigma_{\varepsilon}} + \upsilon \right) \frac{\partial \varepsilon}{\partial x_{j}} \right] \end{cases}$$

 $+C_{1\varepsilon}\frac{\varepsilon}{k}\upsilon_{t}\left(\frac{\partial\langle u_{i}\rangle}{\partial x}+\frac{\partial\langle u_{j}\rangle}{\partial x_{s}}\right)\frac{\partial\langle u_{i}\rangle}{\partial x_{s}}-C_{2\varepsilon}\frac{\varepsilon^{2}}{k}.$

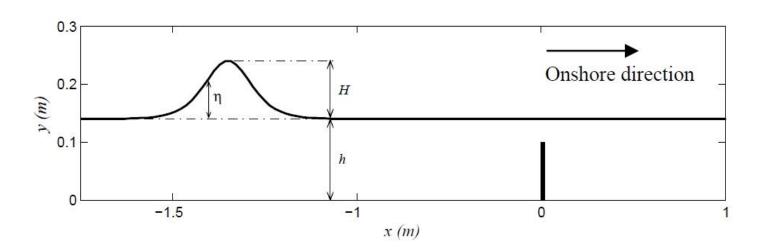
✓ Linear mathematic form – isotropic

$$\rho \left\langle u_i' u_j' \right\rangle = -C_d \rho \frac{k^2}{\varepsilon} \left(\frac{\partial \left\langle u_i \right\rangle}{\partial x_i} + \frac{\partial \left\langle u_j \right\rangle}{\partial x_i} \right) + \frac{2}{3} \rho k \delta_{ij}.$$

✓ Non-linear mathematic form — anisotropic

$$\begin{split} \rho \left\langle u_{i}' u_{j}' \right\rangle &= -C_{d} \rho \frac{k^{2}}{\varepsilon} \left(\frac{\partial \left\langle u_{i} \right\rangle}{\partial x_{j}} + \frac{\partial \left\langle u_{j} \right\rangle}{\partial x_{i}} \right) + \frac{2}{3} \rho k \delta_{ij} \\ &- \rho \frac{k^{3}}{\varepsilon^{2}} \left[C_{1} \left(\frac{\partial \left\langle u_{i} \right\rangle}{\partial x_{l}} \frac{\partial \left\langle u_{l} \right\rangle}{\partial x_{j}} + \frac{\partial \left\langle u_{j} \right\rangle}{\partial x_{l}} \frac{\partial \left\langle u_{l} \right\rangle}{\partial x_{i}} - \frac{2}{3} \frac{\partial \left\langle u_{l} \right\rangle}{\partial x_{k}} \frac{\partial \left\langle u_{k} \right\rangle}{\partial x_{l}} \delta_{ij} \right) \\ &+ C_{2} \left(\frac{\partial \left\langle u_{i} \right\rangle}{\partial x_{k}} \frac{\partial \left\langle u_{j} \right\rangle}{\partial x_{k}} - \frac{1}{3} \frac{\partial \left\langle u_{l} \right\rangle}{\partial x_{k}} \frac{\partial \left\langle u_{l} \right\rangle}{\partial x_{k}} \delta_{ij} \right) + C_{3} \left(\frac{\partial \left\langle u_{k} \right\rangle}{\partial x_{i}} \frac{\partial \left\langle u_{k} \right\rangle}{\partial x_{j}} - \frac{1}{3} \frac{\partial \left\langle u_{l} \right\rangle}{\partial x_{k}} \delta_{ij} \right) \right]. \end{split}$$

RANS Model -Numerical Setup



> Computational Domain:

$$-2.5 \le x \le 1.0 \text{ m}$$

$$0.0 \le y \le 0.3 \text{ m}$$

> Submerged Barrier:

2 cm in width, 10 cm in length located at x = 0.0 m.

Numerical Mesh:

structured & uniform rectangular grids of $\Delta x = \Delta y = 1$ mm.

Wave Condition:

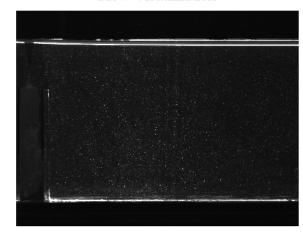
water depth (h) = 14 cm

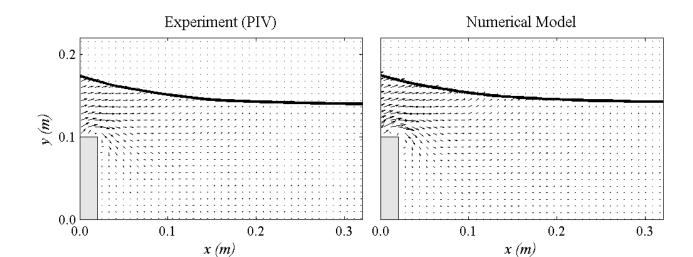
wave non-linearity (H/h) = 0.50

RANS Model -Numerical Results

Onshore Direction

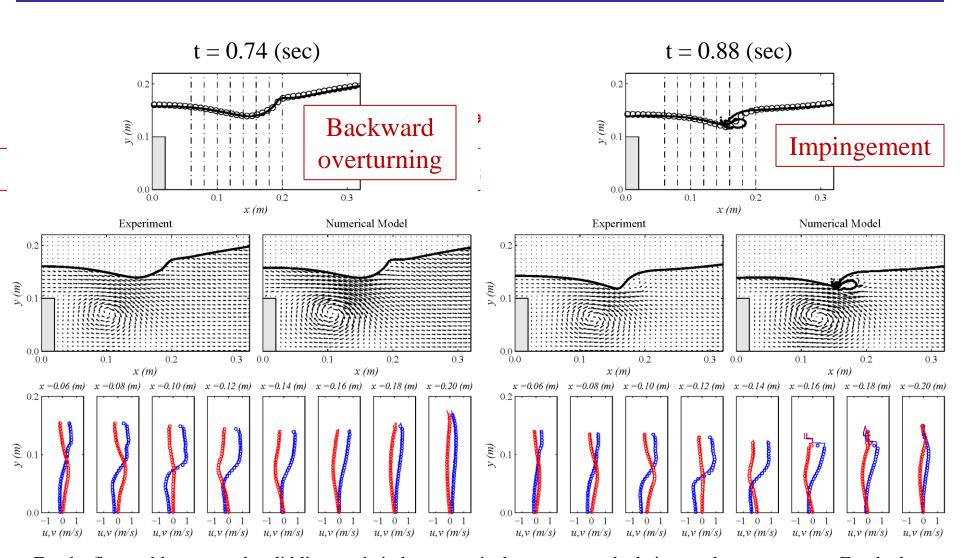
Flow Visualization





- Motivation
- > Small-scale tsunami experiments
- > Numerical modeling on tsunami-like long waves
 - RANS Model
- Model validation
- Wave force and pressure fields
- > Energy dissipation

Model Validation -Flow Fields



For the first and lower panel, solid lines and circles respectively represent calculations and measurements. For the lower panel, blue and red indicate horizontal and vertical velocities.

Model Validation -Flow Fields

> Some possible explanations for the discrepancies between two results.

- ✓ The present model is a single-phase numerical scheme, which means the air is treated as numerical voids not the real air-fluid interaction.
- ✓ Although the experiments are highly repeatable, entrapped air-bubbles in the wave breaking processes cause unavoidable uncertainties due to the natural complexity of fluids (Chan and Melville, 1988; Kobayashi and Raichle, 1994).
- ✓ To improve the measurements, the bubble image velocimetry (BIV) technique should be included to measure the velocity variation near the bubble area (Pedrozo-Acuña et al., 2011; Ryu et al., 2007).

Model Validation -Turbulence Fields

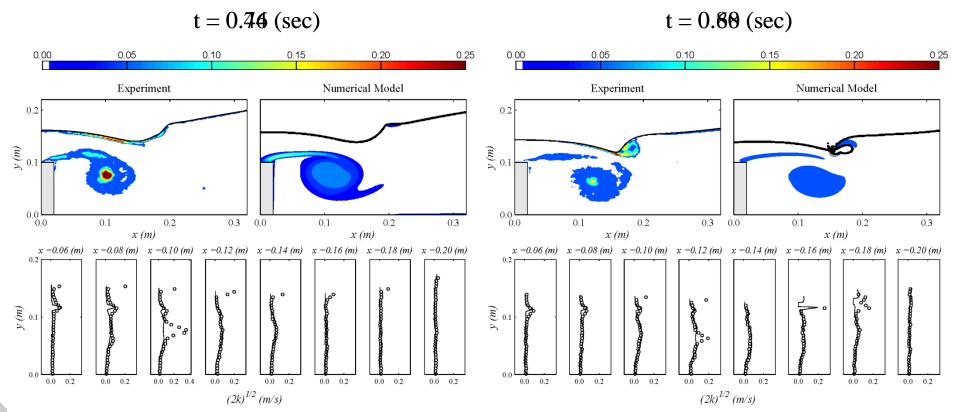
- Turbulence generated by breaking waves in coastal regions is considered an important factor in leading sediment into suspension and thus affects sediment transport and topography change.
- \triangleright In present experiment, two velocity components were measured (i.e., u and v).
- Velocity fluctuations: $u' = u \langle u \rangle$, $v' = v \langle v \rangle$; and $\langle u \rangle$ and $\langle v \rangle$: ensemble-averaged mean velocities.
- Turbulent kinetic energy (k) can be estimated by $k = \langle u'u' + v'v' \rangle_N$, in which symbol $\langle \rangle$ represent ensemble average, and N is the number of repeated experiment (N = 35 in the present study).
- For details on the method used to evaluate turbulence characteristics from experiments, refer to the study of Huang et al. (2009).

Model Validation -Turbulence Fields

Solitary wave interaction with a submerged vertical barrier

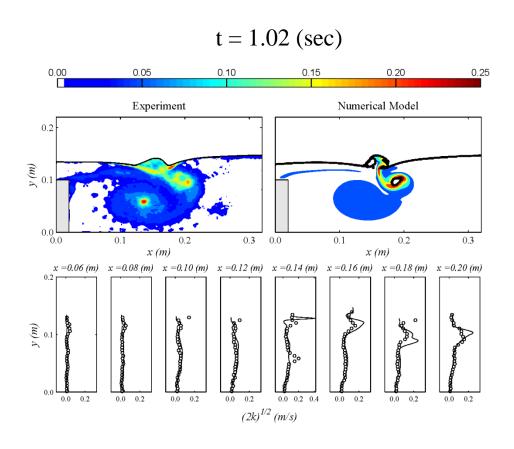
The turb vortex,

The find by previous at the impinging point are about 0.3 m/s.



For the lower panel, solid lines and circles represent the numerical and experimental results.

The secondary backward breaking: the measured and modeled (at x = 0.14 m) is about value of 0.202 (m/s) and 0.408 (m/s).



For the lower panel, solid lines and circles represent the numerical and experimental results.

Model Validation -Turbulence Fields

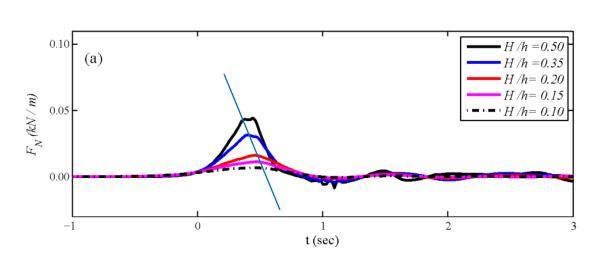
- Some possible explanations for the discrepancies between two results.
- ✓ At the pre-breaking stage:
- near the free surface (Exp. > Num.)
- the main vortex's core (Exp. > Num.)
- ✓ At the post-breaking stage:
- the main vortex's core (Exp. > Num.)
- splash-up event (Exp. < Num.)

- ⇔ Small ripples appear on the free surface (Huang et al., 2009), which suggests the importance of surface tension.
- ⇔ Experiment was highly repeatable for 35 runs, however, the location of the core of the main vortex was slightly different for each test.
- \Leftrightarrow The k- ε model may not reasonably estimate the initial stage of breaking waves: the value of calculated turbulence is larger than the measurement (Lin and Liu, 1998a).
- ⇔ Some studies on surf-zone dynamics also overestimate the turbulence after wave breaking using similar numerical approaches (Bakhtyar et al., 2009, 2010; Christensen et al., 2002).

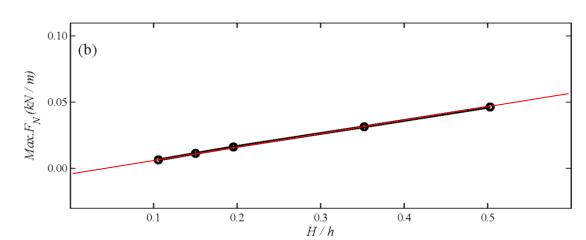
- Motivation
- > Small-scale tsunami experiments
- > Numerical modeling on tsunami-like long waves
 - RANS Model
- > Model validation
- Wave force and pressure fields
- > Energy dissipation

Wave Force and Pressure Fields

The peak net force occurs later for lower wave non-linearity values simply due to lower phase velocity.



- The relationship between the maximum net force and the wave non-linearity is nearly linear.
- Liu and Al-Banaa (2004):



⇒ linear relation between the maximum wave force and wave non-linearity for a surface-piercing vertical barrier fixed to the seafloor.

National Cheng Kung University Department of Hydraulic & Ocean Engineering

- Motivation
- > Small-scale tsunami experiments
- > Numerical modeling on tsunami-like long waves
 - RANS Model
- > Model validation
- Wave force and pressure fields
- Energy dissipation

Energy Dissipation

Derived By Lin (2004)

$$\int_{t_1}^{t_2} E dx dz + \int_{t_1}^{t_2} dt \int D dx dz$$

$$= \left[\int_{t_{1}}^{t_{2}} dt \int_{-h(CS_{1})}^{\eta(CS_{1})} \langle P_{D} \rangle \langle u \rangle dz + \int_{t_{1}}^{t_{2}} dt \int_{-h(CS_{1})}^{\eta(CS_{1})} \frac{\rho}{2} \langle u \rangle \langle u^{2} + v^{2} \rangle dz\right]$$

$$- \left[\int_{t_{1}}^{t_{2}} dt \int_{-h(CS_{2})}^{\eta(CS_{2})} \langle P_{D} \rangle \langle u \rangle dz + \int_{t_{1}}^{t_{2}} dt \int_{-h(CS_{2})}^{\eta(CS_{2})} \frac{\rho}{2} \langle u \rangle \langle u^{2} + v^{2} \rangle dz\right]$$

$$\int E dx dz \mid_{t=t_1} = \int E dx dz \mid_{t=t_2} = 0$$

E: total mechanical energy(kinetic energy + potential energy)

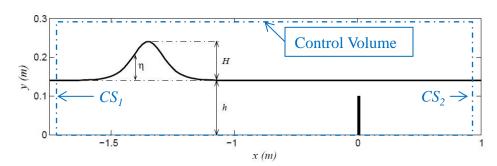
D: the rate of local energy dissipation within CV

$$ED = \left(EP_{CS_1} + EC_{CS_1}\right) - \left(EP_{CS_2} + EC_{CS_2}\right)$$

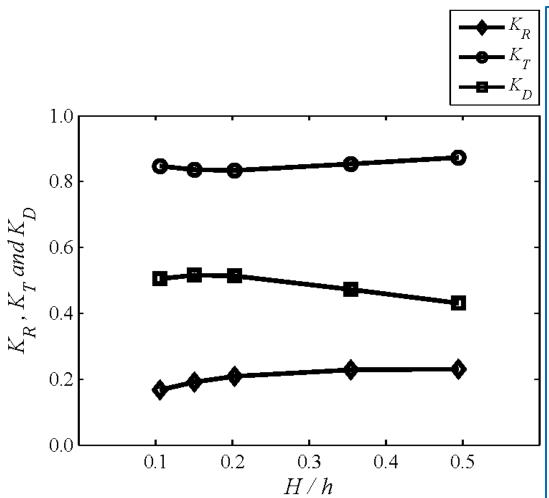
$$ED = \left(E_{inc} + E_{ref}\right) - \left(E_{trans}\right)$$

$$K_R = \sqrt{\frac{-E_{ref}}{E_{inc}}} \qquad K_T = \sqrt{\frac{E_{trans}}{E_{inc}}}$$

$$K_D = \sqrt{\frac{ED}{E_{inc}}} = \sqrt{1 - K_R^2 - K_T^2}$$



Energy Dissipation



- Energy reflection coefficient (K_R) increases with increasing H/h.
- Energy transmission coefficient (K_T) decreases with increasing H/h from 0.10 to 0.20 then increases from 0.20 to 0.50.
- Energy dissipation coefficient (K_D) increases with increasing H/h from 0.10 to 0.15 then decreases from 0.15 to 0.50.
- \triangleright Max. $K_D \Rightarrow H/h = 0.15$.
- $> K_D > K_R$

Conclusion and Ongoing Works

- Scientific computing is a powerful means in solving practical problems in coastal and ocean engineering. However, to capture and interpret the physical phenomena correctly, it requires deep understanding of the problems.
- Status of computational research
- ✓ Oyster Larvae (OL) dispersion simulation
- ✓ Coupling model (Shallow water equation +Navier-Stokes equation)
- ✓ Waves propagating over the density-stratified fluid in a submarine trench
- ✓ Solitary wave interaction with a submerged vertical barrier (Slotted / Perforated Barrier)
- ✓ Meshless Potential Flow Model
- ✓ Plunging wave-interaction with a nearshore platform

Thanks for your attention~!!!

